SECTION III.

PHYSIOGRAPHY.

§ 1. General Description of Australia.

1. Geographical Position.-The Anstralian Commonwealth, which includes the island continent of Australia proper and the island of Tasmania, is situated in the Southern Hemisphere, and comprises in all an area of about $2,974,581$ square miles, the mainland alone containing about $2,948,366$ square miles. Bounded on the west and east by the Indian and Pacific Oceans respectively, it lies between longitudes 113° 9^{\prime} E. and $153^{\circ} 39^{\prime}$ E., while its northern and sonthern limits are the parallels of latitude $10^{\circ} 41^{\prime} \mathrm{S}$. and $39^{\circ} 8^{\prime} \mathrm{S}$., or, including Tasmania, $43^{\circ} 39^{\prime} \mathrm{S}$. On its north are the Timor and Arafura Seas and Torres Strait, on its south the Southern Ocean and Bass Strait.*

Tropical and T'emperate Regions. Of the total area of Australia the lesser portion lies within the tropics. Assuming, as is usual, that the latitude of the Tropio of Capricorn is $23^{\circ} 30^{\prime} \mathrm{S}$., \dagger the areas within the tropical and temperate zones are approximately as follows :-

areas of tropical and temperate regions

of States and Territory within Tropics.

Areas.	Queensland.	Western Australia.	Northern Territory.	Total.
	Sq. miles.	Sq. miles.	Sq. miles.	Sq. miles.
Within Tropical Zone	359,000	364,000	426,320	1,149,320
Within Temperate Zone	311,500	611,920	97,300	1,020,720
Ratio of Tropical part to whole State . .	0.535	0.373	0.814	0.530
Ratio of Temperate part to whole State	0.465	0.627	0.186	0.470

Thus the tropical part is roughly about one-half (0.530) of the three territories mentioned above, or about five-thirteenths of the whole Commonwealth (0.386). See hereafter Meteorology-page 48.
2. Area of Australia compared with areas of other Countries.-That the area of Australia is greater than that of the United States of America, that it is four-fifths of that of Canada, that it is nearly one-fourth of the area of the whole of the British Empire, that it is more than three-fourths of the whole area of Europe, that it is more than 25 times as large as any one of the following, viz., the United Kingdom, Hungary, Italy, the Transvaal, and Ecuador, are facts which are not always adequately realised. It is this great size, taken together with the fact of the limited population, that gives to the problems of Australian development their unique character, and its clear comprehension is essential in any attempt to understand those problems.

The relative magnitudes may be appreciated by a reference to the following table, which shows how large Australia is compared with the countries referred to, or vice versa. Thus, to take line one, we see that Europe is about $1 \frac{3}{10}$ times ($1 \cdot 29711$) as large as Australia, or that Australia is about three-quarters (more accurately 0.77) of the ares of Europe.

[^0]AREA OF AUSTRALIA IN COMPARISON WITH THAT OF OTHER COUNTRIES.

AREA OF AUSTRALIA IN COMPARISON WITH OTHER COUNTRIES-continued.

AREA OF AUSTRALIA IN COMPARISON WITH OTHER COUNTRIES-continued.

AREA OF AUSTRALIA IN COMPARISON WITH OTHER COUNTRIES-continued.

[^1]AREA OF AUSTRALIA IN COMPARISON WITH OTHER COUNTRIES—continued.

Country.	Area.	Australian Commonwealth in comparison with-	In comparison with Australian Cwealth.
Aubtralasia and Polynesia-continued-	Sq. miles.		
Hawaii	6,449	461.25	0.00217
New Hebrides ..	5,600	540.83	0.00185
French Establishments in Oceania	1,520	1956.96	0.00051
Territory of Western Samoa ..	1,260	2360.78	0.00042
Marianne, Caroline, and Marshall Islands	960	3093.52	0.00032
Tonga ..	385	7726.18	0.00013
Guam	225	13220.36	0.00008
Gilbert and Ellice Islands	208	14300.87	0.00007
Samoa (U.S.A. part)	102	29162.56	0.00003
Norfolk Island	13	228813.92	-
Nauru Island	12	247881.75	-
Total, Australasia and Polynesia	3,422,017	0.87	1.15042
British Empire	13,257,584	0.22	4.45696

The above figures are extracted from the Stateoman's Year-Book for 1922, but, as several of the boundaries have not yet been finally adjusted since the war, modifications will in some instances be necessary.
3. Relative Areas of Political Subdivisions.-As already stated, Australia consists of six States and the Northern and Federal Territories. The areas of these, in relation to one another and to the total of Australia, are shewn in the following table :-

RELATIVE AREAS OF STATES, TERRITORIES, AND COMMONWEALTH.

State or Territory.	Area.	Ratlo which the Area of each State and Territory bears to that of other States, Territories, and Commonwealth.							
		N.s.w.	Vic.	Q'land.	S.A.	W.A.	Tas.	N. Ter.	C'wlth.
	Sq. miles.								
New South Wales	309,432	1.000	3.521	0.461	0.814	0.317	11.804	0.591	0.104
Victoria	87,884	0.284	1.000	0.131	0.231	0.090	3.359	0.168	0.030
Queensland ..	670,500	2.167	7.629	1.000	1.764	0.687	25.577	1.280	0.225
South Australia	380,070	1.298	4.325	0.567	1.000	0.389	14.498	0.726	0.128
West. Australia	975,920	3.154	11.105	1.456	2.568	1.000	37.228	1.864	0.328
Tasmania	26,215	0.085	0.298	0.039	0.069	0.027	1.000	0.050	0.009
North. Territory	523,620	1.692	5.958	0.781	1.378	0.537	19.974	1.000	0.178
Federal Territory	940	0.003	0.011	0.001	0.002	0.001	0.036	0.002	0.000a
Commonwealth	2,974,581	9.613	33.847	4.436	7.826	3.048	113.469	5.681	1.000

(a) The correct decimal is 0.0003 .

Thus, looking at the top line, New South Wales is seen to be over three-and-a-half times as large as Victoria (3.521) and less than one-half the size of Queensland (0.461); or again, looking at the bottom line, the Commonwealth is shewn to be more than nine-and-a-half times as large as New South Wales (9.613), and nearly thirty-four times as large as Victoria (33.847).

These relative magnitudes are shewn in the small diagram below. It may be added that Papua (or British New Guinea), with its area of 90,540 square miles, is 0.030 of the ares of the Commonwealtia. The comparatively small size of the Federal Territory prevents its being shewn in this diagram.

4. Coastal Configuration.-There are no striking features in the configuration of the coast; the most remarkable indentations are the Gulf of Carpentaria on the north and the Great Australian Bight on the south. The Cape York Peninsula on the extreme north is the only other remarkable feature in the outline. In Year Book No. 1, an enumeration of the features of the coast-line of Australia was given (see pp. 60 to 68).
(i) Coast-line. The lengths of coast-line, exclusive of minor indentations, both of each State and of the whole continent, are shewn in the following table:-

SQUARE MILES OF TERRITORY PER MILE OF COAST LINE.
States, Territory, and Continent.

State.	Const-line.	Areat	state.	Coast-line.	Area -Const-line.
	Miles.	Sq. miles.		Miles.	Sq. miles.
New South Wales(a)	700	443	South Australia	1,540	247
Victoria ..	680	129	Western Australia	4,350	224
Queensland ..	3,000	223	Continent (b)	11,310	261
Northern Territory	1,040	503	Tasmania	900	29

$$
\text { (a) Including Federal Territory. (b) Aren } 2,948,360 \text { square miles. }
$$

For the entire Commonwealth this gives a coast-line of 12,210 miles, and an average of 244 square miles for one mile of coast-line. According to Strelbitski, Europe has only 75 square miles of area to each mile of coast-line, and, according to recent figures, England and Wales have only one-third of this, viz., 25 square miles.
(ii) Historical Significance of Coastal Names. It is interesting to trace the voyages of some of the early navigators by the names bestowed by them on vorious coastal features-thus Dutch names are found on various points of the Western Australian coast, in Nuyt's Archipelago, in the Northern Territory and in the Gulf of Carpentaria; Captain Cook can be followed along the coasts of New South Wales and Queensland; Flinders' track is easily recognised from Sydney southwards, as far as Cape Catastrophe, by the numerous Lincolnshire names bestowed by him; and the French navigators of the end of the eighteenth and the beginning of the nineteenth century have left their names all along the Western Australian, South Australian, and Tasmanian coasts.
5. Geographical Features of Australia.-In each of the earlier issues of this Year Book fairly complete information has been given concerning some special geographical element. Thus No. 1 Year Book, pp. 60-68, contains an enumeration of Coastal features ; No. 2, pp. 66-67, deals with Hydrology ; No. 3, pp. 59-72, with Orography ; No. 4, pp. 59-82, with the Lakes of Australia; No. 5, pp. 51-80, with the Islands of Australia; No. 6, pp. 55-66, with the Mineral Springs of Australia ; No. 7, pp. 56-58, with the Salient Features in the Geological History of Australia, with special reference to changes of climate. A special article dealing with the plains and peneplains of Australia appeared in No. 12 Year Book, pp. 82-88. In No. 13 and No. 14 respectively, articles were published on Past Glacial Action in Australia, and on Evidences of Past Volcanic Action in Australia. This practically completes the description of the ordinary physical features.

§ 2. The Fauna of Australia.

An authoritative article describing in some detail the principal features of the tauna of Australia was given in Year Books No. 1 (sce pp. 103 to 109) and No. 2 (sec pp: 111 to 117), while a synoptical statement appeared in No. 3 (see pp. 73 to 76). Considerations of space, however, preclude the inclusion in this issue of more than a passing reference to the subject.

§ 3. The Flora of Australia.

In Year Books No. 1 (see pp. 109 to 114) and No. 2 (see pp. 117 to 122) a fairly complete though brief account was given of the Flora of Australia, and in Year Book No. 3 similar information in a greatly condensed form will be found on pp. 76 to 78. Space in this issue will not permit of more than a mere reference to preceding volumes.

A special article dealing with Australian fodder plants, contributed by J. H. Maiden, Esq., F.L.S., Government Botanist of New South Wales, and Director of the Botanic Gardens, Sydney, appeared in Official Year Book No. 6, pp. 1190-6. A special article on the grasses and saltbushes of Australia, contributed by E. Breakwell, B.A., B.Sc., Agrostologist at the Botanic Gardens, Sydney, appeared in Year Book No. 9, pp. 84-90. Year Book No. 10 contained two special articles; one dealing with Australian eucalyptus timbers, contributed by R. T. Baker, F.L.S., appeared on pp. 85 to 92 , and one by H. G. Smith, F.C.S., dealing with the chemical products of Australian eucalypts, appeared on pp. 92-98.

§ 4. Seismology in Australia.

A brief statement regarding the position of seismology and seismological record in Australia appeared in Year Book No. 4, pp. 82 and 83.

§ 5. The Geology of Australia.

1. General.-Independent and authoritative sketches of the geology of each State were given in Year Books No. 1 (see pp. 73 to 103) and No. 2 (see pp. 78 to 111). Want of space has precluded the insertion of these sketches in the present issue of the Year Book, and it has not been considered possible to give anything like a sufficient account of the geology of Australia by presenting here a mere condensation of these sketches. Reference must, therefore, be made to either Year Book No. 1 or No. 2 , ut supra.
2. Geological Map of Australia.--The map shewing the geographical distribution of the more important geological systems and formations, which appeared on page 51 of Year Book No. 12 and in preceding issues, has been discontinued pending the preparation of a new map embodying later information.
3. The Plains and Peneplains of Australia.-A special article dealing with this subject appears on pp. 82-88 of Year Book No. 12.
4. The Building Stones of Australia.-Independent and authoritative descriptions of the building stones of each State (with the exception of Queensland) will be found in Official Year Book No. 9, pp. 446-466.

A special article dealing with "The Building Stones of Queensland" will be found on pp. 89-95 of Year Book No. 12.
5. Past Glacial Action in Australia.-A special article on this subject will be found in Year Book No. 13, pp. 1133 et seg.
6. Evidences of Past Volcanic Action in Australia.-See special article in Year Book No. 14, pp. 46 et seq.

§6. Climate and Meteorology of Australia. ${ }^{*}$

1. Introductory.-In preceding Year Books some account was given of the history of Australian meteorology, including reference to the development of magnetic observations and the equipment for the determination of various climatological records. (See Year Book No. 3, pp. 79, 80.) In Year Book No. 4, pp. 84 and 87, will be found a short sketch of the creation and organisation of the Commonwealth Bureau of Meteorology and a résumé of the subjects dealt with at the Meteorological Conference of 1907. Space will not permit of the inclusion of this matter in the present issue. In the Section of this Year Book dealing with population, a table will be found showing the population and average rainfall of the principal urban incorporated areas in the Commonwealth.

In addition, fifteen Bulletins of Climatology have been published, particulars of which are given in preceding issues of the Official Year Book (see No. 12, page 54).
2. Meteorological Publications.-The following publications are issued daily from the Central Meteorological Bureau, viz. :-(i) Weather charts. (ii) Rainfall maps. (iii) Bulletins, Victorian and Interstate, shewing pressure, temperature, wind, rain, cloud extent, and weather. Similar publications are also issued from the divisional offices in each of the State Capitals.

Commencing with January, 1910, the "Australian Monthly Weather Report," containing statistical records from representative selected stations, with cain maps and diagrams, \&c., is being published. Complete rainfall and other climatological data are published in annual volumes of meteorological statistics for each State separately.

The first text book of Australian meteorology, "Climate and Weather of Australia," was publisbed in 1913.
3. General Description of Australia.-In the general description of Australia, page 40, it is pointed out that a considerable portion (0.530) of three divisions of the Australian Commonwealth is north of the tropic of Capricorn, that is to say, within the States of Queensland and Western Australia, and the Northern Territory, no less than 1,149,320 square miles belong to the tropical zone, and $1,020,720$ to the temperate zone. The whole area of the Commonwealth within the temperate zone, however, is $1,825,261$ equare miles; thus the tropical part is about 0.386 , or about five-thirteenths of the whole, or the "temperate" region is half as large again as the " tropical" (more accurately 1.591). By reason of its insular gengraphical position, and the absence of striking physical features, Australia is, on the whole, less subject to extremes of weather than are regions of similar area in other parts of the globe; and latitude for latitude Australia is, on the whole, more temperate.

The altitudes of the surface of Australia range up to a little over 7,300 feet, hence its climate embraces a great many features, from the characteristically tropical to what is essentially alpine, a fact indicated in some measure by the name Australian Alps given to the southern portion of the great Dividing Range.

While on the coast the rainfall is often abundant and the atmosphere moist, in some portions of the interior the rainfall is very limited, and the atmosphere dry. The distribution of forest, as might be expected, and its climatic influence, is consequently very variable. In the interior there are on the one hand fine belts of trees, on the other there are large areas which are treeless, and where the air is hot and parched in summer. Again, on the coast, even as far south as latitude 35°, the vegetation is tropical in its luxuriance, and also somewhat so in character. Climatologically, therefore, Australia may be said to present a great variety of features. The various climatological characteristics will be referred to in detail.

[^2]4. Meteorological Divisions.-The Commonwealth Meteorologist has divided Australia, for climatological and meteorological purposes, into five divisions. The boundaries between these may be thus defined:-(a) Between divisions I. and II., the boundary between South and Western Australia, viz., the 129th meridian of east longitude; (b) between divisions II. and III., starting at the Gulf of Carpentaria, along the Norman River to Normanton, thence a straight line to Wilcannia on the Darling River, New South Wales ; (c) between divisions II. and IV., from Wilcannia along the Darling River to its junction with the Murray ; (d) between divisions II. and V., from the junction of the Darling and Murray Rivers, along the latter to Encounter Bay; (e) between divisions III. and IV., starting at Wilcannia, along the Darling, Barwon, and Dumaresq Rivers to the Great Dividing Range, and along that range and along the watershed between the Clarence and Richmond Rivers to Evans Head on the east coast of Australia; (f) between divisions IV. and V., from the junction of the Darling and Murray Rivers along the latter to its junction with the Murrumbidgee, along the Murrumbidgee to the Tumut River, and along the Tumut River to Tumat, thence a straight line to Cape Howe ; (g) division V. includes Tasmania.

The population included within these boundaries at the Census of the 4th April, 1921, was approximately as follows:-

Division	I.	II.	III.	IV.	V.
Population	332,000	500,000	824,000	$1,915,000$	$1,866,000$

In these divisions the order in which the capitals occur is as follows:-(i) Perth, (ii) Adelaide, (iii) Brisbane, (iv) Sydney, (v) Melbourne, and (vi) Hobart; and for that reason the elimatological and meteorological statistics will be set forth in the indicated order in this publication.

Special Climatological Stations. The latitudes, longitudes, and altitudes of special stations, the climatological features of which are graphically represented hereinafter, are as follows :-
special climatological stations.

Locality.	Height above Se: Level.	Latitude. S.	Longitude. E.	Locality.	Height above Sea Level.	Latitude. S.	Longitude. E.
	Feet.	deg. min.	deg. min.		Feet.	deg. min.	deg. min.
Perth	197	$31 \quad 57$	115	Darwin ..	97	1228	$130-51$
Adelaide	140	$3450{ }^{3}$	13835	Daly Waters	691	$16 \quad 16$	13323
Brisbane	$1: 37$	$27 \quad 28$	153	Alice Springs	1,926	$23 \quad 38$	1331
Sydney	133	$33 \quad 52$	15112	Dubbo ..	870	32.18	14835
Melbuurne	115	$37 \quad 49$	14458	Laverton, W.A.	1,530	$28 \quad 40$	$122 \quad 23$
Hubart	177	$42 \quad 53$	14720	Coolgardie ..	1,389	$30 \quad 57$	12110

5. Temperatures.-In respect of Australian temperatures generally it may be pointed out that the isotherm for 70° Fahrenheit extends in South America and South Africa as far south as latitude 33°, while in Australia it reaches only as far south as latitude 30°, thus shewing that, on the whole, Australia has a more temperate climate when compared latitude for latitude with other places in the Southern Hemisphere.

The comparison is even more favourable when the Northern Hemisphere is included therein, for in the United States the 70° isotherm extends in several of the western States as far north as latitude 41°. In Europe the same isotherm reaches almost to the southern shores of Spain, passing, however, afterwards along the northern shores of Africa till it reaches the Red Sea, when it bends northward along the eastern shore of the Mediterranean till it reaches Syria. In Asia nearly the whole of the land area south of latitude $40^{\circ} \mathrm{N}$. has a higher isothermal value than 70°.

The extreme range of shade temperatures in summer and winter in a very large part of Australia amounts to probably only 81°. In Siberia, in Asia, the similar range is no less than 171°, and in North America 153°, or approximately double the Australian range.

Along the northern shores of the Australian continent the temperatures are very equable. At Darwin, for example, the difference in the means for the hutlest and coldest months is only 8.2°, and the extreme readings for the year, that is, the highest maximum in the hottest month and the lowest reading in the coldest month, shew a difference of under 50°.

Coming southward the extreme range of temperature increases gradually on the coast, and in a more pronounced way inland.

The detailed temperature results for the several capitals of the States of Australia are shewn in the Climatological Tables hereinafter.
(i) Hottest and Coldest Parts. A comparison of the temperatures recorded at coast and inland stations shews that, in Australia as in other continents, the range increases with increasing distance from the coast.

In the interior of Australia, and during exceptionally dry summers, the temperature occasionally reaches or exceeds 120° in the shade, and during the dry winters the major portion of the country to the south of the tropics is subject to ground frosts. An exact knowledge of temperature disposition cannot be determined until the interior becomes more settled, but from data procurable it would appear that the hottest area of the continent is situated in the northern part of Western Australia about the Marble Bar and Nullagine goldfields, where the maximum shade temperature during the summer sometimes exceeds 100° for days, and even weeks, continuously. The coldest part of the Commonwealth is the extreme south-east of New South Wales and extreme east of Victoria, namely, the region of the Australian Alps. Here the temperature seldom, if ever, reaches 100°, even in the hottest of seasons.

Tasmania, although occasionally hot winds may cross the Straits and cause the temperature to rise to 100° in the low-lying parts, as a whole enjoys a most moderate and equable range of temperature throughout the year.
(ii) Monthly Maximum and Minimum Temperatures. The normal monthly maximum and minimum temperatures can be best shewn by means of graphs, which exhibit the nature of the fluctuation of each for all available years. In the diagram (on page 65) for nine representative places in Australia, the upper heavy curves shew the mean maximum, the lower heavy curves the mean maximum temperatures based upon daily observations. On the same diagram the thin curves shew the relative humidities (see next paragraph).
6. Relative Humidity.-Next after temperature the degree of humidity may be regarded as of great importance as an element of climate; and the characteristio differences of relative humidity between the various capitals of Australia call for special remark. For six representative places the variations of humidity are shewn on the graph on page 65, which gives results based upon daily observations of the dry and wet bulb thermometers for all available years. Hitherto difficulties have been experienced in many parts of Australia in obtaining satisfactory observations for a continuous period of any length. For this reason it has been thought expedient to refer to the record of humidity at first order stations only, where the results are thoroughly reliable. Throughout, the degree of humidity given will be what is known as relative humidity, that is, the percentage of aqueous vapour actually existing to the total possible if the atmosphere were saturated.

The detailed humidity results for the several State capitals are given in the Climatological Tables hereinafter. From these, it is seen that, in respect of relative humidity, Sydney and Hobart have the first place, while Brisbane, Melbourne, Perth, and Adelaide follow in the order stated, Adelaide being the driest. The graphs on page 65 shew the annual variations in humidity. It will be observed that the relative humidity is ordinarily but not invariably great when the temperature is low.
7. Evaporation.-The rate and quantity of evaporation in any territory is influenced by the prevailing temperature, and by atmospheric humidity, pressure and movement. In Australia the question is of perhaps more than ordinary importance, since in its drier regions water has often to be conserved in "tanks"* and dams. The magnitude of the economic loss by evaporation will be appreciated from the records on pages 67 and 60 to 64 and 73 , which shew that the yearly amount varies from about 33 inches at Hobart to 94 inches at Alice Springs in the centre of the Continent.
(i) Monthly Evaporation Curves. The curves shewing the mean monthly evapora. tion in various parts of the Commonwealth will disclose how characteristically different are the amounts for the several months in different localities. The evaporation for characteristic places is shewn on the diagram shewing also rainfalls (see page 66).
(ii) Loss by Evaporation. In the interior of Australia the possible evaporation is greater than the actual rainfall. Since, therefore, the loss by evaporation depends largely on the exposed area, tanks and dams so designed that the surface shall be a minimum are advantageous. Similarly, the more protected from the direct rays of the sun and from winds, by means of suitable tree planting, the less will be the loss by evaporation : these matters are of more than ordinary concern in the drier districts of Australia.
8. Rainfall.-As even a casual reference to climatological maps, indicating the distribution of rainfall and prevailing direction of wind, would clearly shew, the rainfall of any region is determined mainly by the direction and route of the prevailing winds, by the varying temperatures of the earth's surface over which they blow, and by the physiographical features gencrally.

Australia lies within the zone of the south-east trade and prevailing westerly winds. The southern limit of the south-east trade strikes the eastern shores at about 30° south latitude, and, with very few exceptions, the heaviest rains of the Australian continent are preeipitated along the Pacific slopes to the north of that latitude, the varying quantities being more or less regulated by the differences in elevation of the shores and of the chain of mountains, upon which the rain-laden winds blow, from the New South Wales northern border to Thursday Island. The converse effect is exemplified on the north-west coast of Western Australia, where the prevailing winds, blowing from the interior of the continent instead of from the ocean, result in the lightest coastal rain in Australia.

The westerly winds, which skirt the southern shores, are responsible for the very reliable, although generally light to moderate, rains enjoyed by the south-western portion of Western Australia, by the south-eastern agricultural areas of South Australia, by a great part of Victoria, and by the whole of Tasmania.
(i) Factors determining Distribution and Intensity of Rainfall.
(ii) Time of Rainfall.

In Year Book No. 6 (see pp. 72 to 74) some notes were given of the various factors governing the distribution, intensity and period of Australian rainfall.
(iii) Wetlest and Driest Regions. The wettest known part of Australia is on the north-east coast of Queensland, between Port Douglas and Cardwell, where three stations situated on, or adjacent to, the Johnstone and Russell Rivers have an average annual rainfall of between 148 and 166 inches. The maximum and minimum falls there are :Goondi, 241.53 in 1894 and 67.88 inches in 1915, or a range of 173.65 inches; Innisfail, 211.24 in 1894 and 69.87 inches in 1902, or a range of 141.37 inches; Harvey's Creek, 254.77 in 1921 and 50.47 inches in 1902, or a range of 174.30 inches.

On four occasions more than 200 inches have been recorded at Goondi, the last of these being in 1910, when 204.82 inches were registered. The record at this station covers a period of 35 years.

Harvey's Creek in the shorter period of 22 years has three times exceeded 200 inches, the total for 1910 being 201.28 inches, and at the South Johnstone Sugar Experiment Station, where a gauge has recently been established, 202.52 inches were recorded in 1921.

The driest known part of the continent is about the Lake Eyre district in South Australia (the only part of the continent below sea level), where the annual average is but 5 inches, and where the fall rarely exceeds 10 inches for the twelve months.

The inland districts of Western Australia were at one time regarded as the driest part of Australia, but authentic observations in recent years over the settled districts in the east of that State shew that the annual average is from 10 to 12 inches.

[^3](iv) Quantities and Distribution of Rainfall generally. The departure from the normal rainfall increases greatly and progressively from the southern to the northern shores of the continent, and similarly also at all parts of the continent subject to capricious monsoonal rains, as the comparisons hereunder will shew. The general distribution is best seen from the map on page 72, shewing the areas subject to average annual rainfalls lying between certain limits. The areas enjoying varying quantities of rainfull determined from the latest available information are shewn in the following table :-

DISTRIBUTION OF AVERAGE RAINFALL.

A verage Annual Lainfall. Lainfall.	$\begin{aligned} & \text { N.S.W. } \end{aligned}$	Victoria.	$\begin{aligned} & \text { Queens- } \\ & \text { land. } \end{aligned}$	$\begin{aligned} & \text { South } \\ & \text { Australia. } \end{aligned}$	Northern Territory	Western Australia.	$\underset{\substack{\text { Tas- } \\ \text { mania. } \\(b)}}{ }$	Commonweath (b)
	mls.	sqr. mls.	sqr. mls.	sqr. mis.	sqr. mls.	sqr. mis.	sqr. mis.	sqr.
Under 10 inches	44,997	nil	91,012	317,600	138,190	513,653	nil	1,105,452
10-15	77,263	19,912	87,489	33,405	141,570	232,815	nil	592,459
15-20	57,639	12,626	112,738	14,190	62,920	89,922	937	350,972
20-30	77,202	29,317	213,779	13,827	93,470	95,404	7,559	530,558
30-40	30,700	14,029	69,880	984	40,690	40,750	4,588	201,621
Over 40	29,506	12,000	95,602	64	46,780	3,376	10,101	190,489
Total area	310,372	87,884	670,500	380,070	593,620	975,920	26,215	2,974,581

(a) Including Federal Capital Territory. (b) Over an area of $\mathbf{3 , 0 3 0}$ square miles no records are available.

Referring first to the capital cities, the complete records of which are given on the following page, it is seen that Sydney with a normal rainfall of 48.27 inches occupies the chief place, Brisbane, Perth, Melbourne, Hobart and Adelaide following in that order, Adelaide with 21.05 inches being the driest. The extreme range from the wettest to the driest year is greatest at Brisbane (72.09 inches) and least at Adelaide (19.48 inches).

In order to shew how the rainfall is distributed throughout the year in various parts of the continent, the figures of representative towns have been selected. (See map on page 71.) Darwin, typical of the Northern Territory, shews that in that region nearly the whole of the rainfall occurs in the summer months, while little or none falls in the middle of the year. The figures for Perth, as representing the south-western part of the continent, are the reverse, for while the summer months are dry, the winter ones are very wet. In Melbourne and Hobart the rain is fairly well distributed throughout the twelve months, with a maximum in October in the former, and in November in the latter. The records at Alice Springs and Daly Waters indicate that in the central parts of Australia the wettest months are in the summer and autumn. In Queensland, as in the Northern Territory, the heaviest rains fall in the summer months, but good averages are also maintained during the other seasons.

On the coast of New South Wales, the first six months of the year are the wettest, with a maximum in the autumn : the averages during the last six months are fair and moderately uniform. In general it may be said that one-third of the area of the continent, principally in the eastern and northern parts, enjoys an annual average rainfall of from 20 to 50 or more inches, the remaining two-thirds receiving generally from about 10 to 20 inches.
(v) Curves of Rainfall and Evaporation. The relative amounts of rainfall and evaporation at different times through the year are best seen by referring to the graphs for a number of characteristic places. (See page 66.) It will be recognised at once how large is the evaporation when water is fully exposed to the direct rays of the sun, and to wind.
(vi) Tables of Rainfall. The table of rainfall for a long period of years for each of the various Australian capitals affords information as to the variability of the fall in successive years, and the list of the more remarkable falls furnishes information as to what may be expected on particular occasions.

RAINFALL AT THE AUSTRALIAN CAPITALS， 1860 T0 1921.

Year．	Perth．			adelaide．			Brisbane．			Stiney．			melbourne．			Hobabt．		
	$\begin{aligned} & \text { 首 } \\ & \text { 首 } \end{aligned}$			荡			$\begin{aligned} & \text { 曾 } \\ & \text { 首 } \end{aligned}$						若					
18601233456788	in．		in．	${ }_{10} \mathrm{In}_{1}$		in．			In．	32.76		in．	${ }^{2} 38$		in．			in．
			\because	${ }_{24.04}$	147		${ }^{699.45}$	155		59．36	157		29.16	159		${ }_{28.19}^{21.05}$	${ }^{4} 8$	
	\because	\because		21.85	119		28．27	98	\because	23．09	108		22.08	139		21.72	148	
	\because	\because			145		68．83	146	\because	\＄7．08	152		36，42			44.67	163	
	．	\because	\because	19.75	121		47.00	14		${ }^{64.12}$	${ }^{135}$		${ }^{27.40}$	114		${ }^{28.11}$	－	
		\because		${ }_{20.11}^{10.31}$	116		51.18	142		${ }^{36.91}$	${ }_{156}^{150}$		${ }_{\text {20．41 }}^{15.94}$	107		${ }_{23.55}^{23.07}$	${ }_{127}^{126}$	
	\ldots	\because	\because	19.05	112	1985	${ }^{61.04}$	112		59．56	140		${ }^{85} 8.79$	130		20．27		25.00
	\because	\because		19.74	117	19.85	${ }^{354.39}$	114	47.5	48.98	${ }_{150}^{161}$	49.99	${ }_{24.58}^{18.27}$	${ }_{129}^{120}$	24.47	${ }_{23.87}^{18.08}$		25.00
01233456778				4	119		06	154		4.47	179		33.77	29		${ }^{27.53}$	23	
		\cdots	\cdots	${ }^{23.93}$	146		45，45	119		52．27	1112		30．17			18．25		
		．．	．	${ }^{23.66}$	146		49．22	131		37．12	161		${ }^{32.52}$	6		${ }^{31.76}$		
			\cdots	${ }^{21.0}$	$1{ }^{139}$		${ }^{62.022}$	1388		73.40	176		23.6	${ }^{134}$				
				${ }^{17.23}$	${ }^{127}$		${ }^{387} \mathbf{3}$ 63	162		${ }^{63.65}$	${ }^{153}{ }^{\text {a }}$		${ }_{\text {22．}}^{28}$			${ }_{29.25}^{24.09}$		
	28.73	00	．	${ }^{133.43}$	110		53．42	130		${ }^{45} .69$	$1{ }^{16}$		${ }^{24.04}$			23．63		
	20.48	143	29.64	${ }^{24.95}$	1	21.24	－30．28		53.59	${ }^{59.66}$	147	54.03	${ }_{25}^{24.10}$		28.11	${ }_{29.76}^{20.82}$		25.24
	41.34	106	（3 yr．）	20.69	130		67.30	157		63.19	167		19.28	127		21.07	210	
188	31.79	116					1	134		29.51	142		． 48	147				
	24.7		．	18.0			39			${ }_{4}^{40.99}$	12					． 69		
	39．65	12	\because	26.76			32．22			${ }_{46.92}^{42.9}$	157		${ }_{23.71}^{22.4}$			${ }_{24.05}$	161	
	31.96		\because	18.74		\cdots	43.49	136		44．04	15		25.85	128		21.55		
	33．44	10		${ }_{14}^{15.89}$			${ }^{26.85}$	112			1＋		${ }^{26.94}$	龶		28.29		
	28．90	105		$\left\lvert\, \begin{aligned} & 14.42 \\ & 25.70\end{aligned}\right.$			${ }^{531.56}$	42		60.16	190		${ }_{32}^{2+.30}$	128		${ }_{24.21}^{21.39}$	${ }_{174}^{189}$	
	27．83		33.29	14.55		19.30			$4 \overline{3} .83$	${ }^{23.01}$	132	42.84	19.42		24.66			
						．												（8）yr．）
188	16.73	126		25.78	39						184		24.24	140			173	
	${ }_{31}^{330}$	${ }_{122}^{93}$	\cdots	${ }^{14.01}$	113								24．73	$2+$				
	40.12	145		21.49	1		88.			49.9			26.8	140		27.46	1	
	23．72	12	\cdots	－			5	105		31			22.60	31		${ }^{27}$	${ }^{141}$	
	31．50	${ }^{103}$	\because	15.17			44.97	121		42			25.16			21.61	1	
	7	118	33.55	${ }^{150.75}$	${ }_{116}$	20.71	60	15	56.80	${ }^{42.52}$	14	51.12	15.61	02	23.61	，		24.29
	40	107		18.84	119		38.85	＋1			174		28.87	116		20.68		
100		124														19．14		
		122		${ }^{18.01}$	12	．	${ }_{1617}^{38.48}$		．		149			113		25．11		
		40	\cdots	25.47			49	136		38			28	130		25.	$\begin{aligned} & 1150 \\ & 6,139 \end{aligned}$	
	34		．	${ }^{20.31}$	117	\cdots	${ }^{33.23}$	${ }^{124}$	\ldots	45.			29.7	128		22.41	1	
	（34．61	${ }_{21}^{18}$	\cdots	${ }_{\text {26．51 }}^{\frac{22.28}{28}}$		\cdots	${ }_{\text {cher }}^{36.76}$	125			145		22.			${ }_{23.31}$	91	
	40.12	－		17.78	12		31.46	119			1			102		22.92		
	－30．52	${ }^{107}$	34.05	27．69	${ }_{138}^{125}$	21.15	${ }_{34.06}^{44.01}$		30.55	${ }_{32.45}^{45.65}$	174	43.41	$\left\lvert\, \begin{aligned} & 17.72 \\ & 25.86 \end{aligned}\right.$		25.36	${ }_{27.5}^{16.5}$		${ }^{9}$
191		135																
		108		15												26.78		
		${ }_{123}^{123}$		${ }_{18.16}^{19.57}$	${ }^{10} 116$		${ }_{40}^{41}$	1115		$\stackrel{+7}{57}$			${ }_{2}^{20}$	，		－ 2.3 .14	4	
14	20．21	128	．	11.39	91					56.4	49		120					
15	${ }_{35.16}^{43.61}$	${ }^{68}$	\because	${ }_{28.16}^{19.38}$	1		${ }_{52.80}^{25.66}$	${ }_{138}^{173}$		${ }_{14.9}^{34.8}$	1161		288					
17	45．64	＋6		2× 80	153		40.92			52			30			30.62		
18			34.98	17．21	108					58．71		46.64			26.39	${ }_{22.48}^{22.04}$		25.82
20	4n．3．	2		$\underline{56.70}$									28.27		\because			
	11.09	13																23．59
rs．			（40）			（83）			（2）			）			（78）			（79）

Note．－The above average Rainfall flgures for Brishane．Sydney，and Melbourne differ slightly from the mean annual falls given in the Climatological Tables on pp．62－64，which are for a less number of years．
9. Remarkable Falls of Rain.-The following are the more remarkable falls of rain in the various States and in the Northern Territory, which have occurred within a period of twenty-four hours. In New South Wales and Queensland falls of less than 15 inches in the 24 hours are not included. Reference, however, to them may be found in preceding Official Year Books:-
heavy rainfalls, new south wales, up to 1921, inclusive.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.	Date.	Amnt.
		ins.			ins.
Anthony	28 Mar., 1887	17.14	Madden's Creek	13 Jan., 1911	18.68
Bega	27 Feb., 1919	17.88	Morpeth	9 Mar., 1893	21.52
Broger's Creek	14 , 1898	20.05	Mount Kembla	13 Jan., 1911	18.25
	13 Jan., 1911	20.83	Numbugga	27 Feb., 1919	17.87
Bulli Mountain	13 Dec., 1898	17.14	Tongarra Farm	14 , 1898	15.12
Burragate	27 " 1919	16.38	Towamba	5 Mar., 1893	20.00
Candelo .	27 Feb., ,	18.58	South Head (near		
Condong	27 Mar., 1887	18.66	Sydney)	29 Apr., 1841	20.12
Cordeaux River	14. Feb., 1898	22.58	, ,	16 Oct., 1844	20.41
Kembla Heights	13 Jan., 1911	17.46			

HEAVY RAINFALLS, QUEENSLAND, UP TO 1921, INCLUSIVE.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.	Date:	Amnt.
		ins.			ins.
Anglesey	26 Dec., 1909	18.20	Flying Fish Point	31 Jan., 1913	16.10
Atherton (Cairns)	31 Jan., 1913	16.69	Gladstone	4 Feb., 1911	18.83
Babinda (Cairns)	1 Feb.,	20.51	Glen Boughton	5 Apr., 1894	18.50
, , ,.	24 Jan., 1916	22.30	Goldsborough		
	21 Apr., 1920	16.05	(Cairns)	31 Jan., 1913	19.92
Babinda	25 Mar., 1921	15.76	Goondi Mill (Innis-		
Bloomsbury	14 Feb., 1893	17.40	fail)	6 Apr., 1894	15.69
	10 Jan., 1901	16.62	29 Dec., 1903	17.83
Brisbane	21 " 1887	18.31	., .,	10 Feb, 1911	17.68
Buderim Mountain	11 ", 1898	26.20	" ${ }^{\prime}$	6 Apr., 1912	15.55
Bundaberg	16 " 1913	16.94	Goondi	30 Jan., 1913	24.10
Burnett Head			Goorganga	23 ", 1918	18.17
(Bundaberg)	16 , 1913	15.22	Halifax	5 Feb., 1899	15.37
Cairns	11 Feb., 1911	15.17		6 Jan., 1901	15.68
	2 Apr.,	20.16	Hambledon Mill	2 , 1911	18.61
Carbrook	23 Jan., 1918	22.66	,. ,	1 Apr.,	19.62
		15.77		30 Jan., 1913	17.32
Cardwell	18 Mar., 1904	18.24	Hampden	23 Apr., 1918	17.30
Carmilla	23 Jan., 1918	15.92		24 ", "	17.19
Clare	26 ,, 1896	15.30	Harvey Creek	8 Mar., 1899	17.72
Collaroy	23 ", 1918	18.06	, , ,	11 Jan., 1905	16.96
Crohamhurst,			, : .	3 , 1911	27.75
(Blackall Range)	2 Feb., 1893	35.71	,.	2 Apr., ",	16.46
	9 Jan., 1898	19.55		31 Jan., 1913	24.72
	6 Mar., "	16.01	Harvey Creek	25 Mar., 1921	15.80
Croydon . .	29 Jan., 1908	15.00	Haughton Valley..	26 Jan., 1896	18.10
Dungeness	16 Mar., 1893	22.17	Holmwood (Wood-		
Dunira	9 Jan., 1898	18.45	ford)	2 Feb., 1893	16.19
	6 Mar., ,	15.95	Howard..	15 Jan., 1905	19.55
Fairymead Plantation (Bundaberg)	16 Jan., 1913	15.32	Huntley (formerly	27 Dec., 1916	18.94
Flying Fish Point	7 Apr., 1912	16.06	Geraldton) .-	11 Feb., 1889	17.13

HEAVY RAINFALLS, QUEENSLAND-continued.

Name of Town or Locality.	Date.	A mnt.	Name of Town or l.ocality.	Date.	Amat.
		Ins.	Mourilyan	7 Apr. 1912	$\begin{gathered} \text { ins. } \\ 1897 \end{gathered}$
Gera!dton)	6 Apr. 1894	16.02	Mourilyan	31 Jan., 1913	18.05
,	24 Jan., 1900	15.22	Mundoolun	21 ,, 1887	17.95
., :,	29 Dec., 1903	21.22	Nambour	9 , 1898	21.00
,	2 Apr., 1911	15.00		27 Dec., 1909	16.80
:	7 , 1912	20.50	Netherdale	22 Jan., 1918	19.50
	31 Jan., 1913	20.91	Oxenford	14 Mar., 1908	15.65
Kamerunga (Cairns)	2 Apr., 1911	21.00	Palmwoods	10 Jan., 1898	15.85
,	31 Jan., 1913	16.00		25 Dec., 1909	17.75
Koumala	23 , 1918	22.31	Pialba (Marybor'gh)	16 Jan., 1913	17.22
		20.65	Plane Creek		
Kuranda (Cairns)	11 Feb., 1911	16.30	(Mackay)	26 Feb.,	27.73
., :, .	17 Mar., "	15.10	Port Douglas	10 Mar., 1904	16.34
\because "		18.60	, ,	17 ", 1911	16.10
.. .,	1 Apr., ",	24.30		1 Apr.,	31.53
.,	2 ", ",	28.80	Proserpine	23 Jan., 1918	18.17
	31 Jan., 1913	16.34	Ravenswood	24 Mar., 1890	17.00
Landsborough	2 Feb., 1893	15.15	Redcliffe	16 Feb., 1893	17.35
Low Island	10 Mar., 1904	15.07	Rosedale	16 Jan., 1913	18.90
	1 Apr., 1911	15.30	Sarina	23 " 1918	22.60
Lyndon (via Brixton)	3 , 1917	17.00*	St. Lawrence	30 ,, 1896	15.00
Mackay	21 Jan., 1918	$24.70 \dagger$	The Hollow (Mac-		
	22 , ,	$17.25 \dagger$	kay)	23 Feb., 1888	15.12
Sugar Experimental			Thornborough	20 Apr., 1903	18.07
Farm, Mackay		16.80	Townsville	24 Jan., 1892	19.20
		17.20		28 Dec., 1903	15.00
Macnade Mill	5 Feb., 1899	15.20	Victoria Mill	6 Jan., 1901	16.67
" .	6 Jan., 1901	23.33	Woodlands (Yepp'n)	31 , 1893	23.07
	4 Mar., 1915	22.00	Wootha	10 Feb., 1915	15.93
Mapleton	26 Dec., 1909	15.72	Yandina	1 ", 1893	20.08
Mirani	12 Jan., 1901	16.59	, .	9 Jan., 1898	19.25
Miriam Vale (B'berg)	17 , 1913	15.80		28 Dec., 1909	15.80
Mooloolah	13 Mar., 1892	21.53	Yarrabah	2 Apr., 1911	30.65
	2 Feb., 1893	19.11	", .	24 Jan., 1916	27.20
Mount Cuthbert	8 Jan., 1911	18.00		25 ,	18.60
Mount Molloy	31 Mar., ",	20.00	Yeppoon	31 , 1893	20.05
,	1 Apr., "	20.00	,"	8 , 1898	18.05
	$\stackrel{2}{ }{ }^{1}$	20.00		8 Oct., 1914	21.70
Mourilyan	11 Feb., ",	17.40			

heavy rainfalls, western australia, up to 1921, inclusive.

[^4]HEAVY RAINFALLS, WESTERN AUSTRALIA-continued.

Name of.Town or Locality.	Date.	Amnt.	Name of Town or Locality.		Date.	Amnt.
		in	Whim Creok			ins.
Point Torment	17 Dec., 1906		Whim Creek		6 Har., 1900	10.03
Port George IV.	17 Jan., 1915	11.24			3 , 1903	10.44
Roebourne	3 Apr., 1898	11.44	Woodstock		21 ", 1912	13.00
Roebuck Plains	5 Jan., 1917	14.01	Wyndham		27 Jan., 1890	11.60
" \quad	6	22.36			4 Mar., 1919	12.50
Tambray	6 Mar., 1900	10.00	Yardil Creek		3 Feb., 1918	10.00
	3 " 1903	10.47	Yeeda		2 Mar., 1916	10.70
Thangoo	17-19 Feb. '96	24.18	, . .		6 Jan., 1917	10.20
	28 Dec., 1898	11.55			7 ", "	11.75
Whim Creek	3 Apr., "	29.41				

HEAVY RAINFALLS, NORTHERN TERRITORY, UP TO 1921, INCLUSIVE.

Name of Town or Locality.	Date.	Amat.	Name of Tow Locality.		Date.	Amnt.
		Ins.				Ins.
Bonrook	24 Dec., 1915	10.60	Cosmopolitan	Gold		
Borroloola	14 Mar., 1899	14.00	Mine		24 Dec., 1915	10.60
Brock's Creek	4 Jan., 1914	10.68	Darwin ..			11.67
	24 Dec., 1915	14.33	Lake Nash	.	21 Mar., 1901	10.25
Burrundie	4 Jan., 1914	11.61	Pine Creek	.	8 Jan., 1897	10.35

heavy rainfal.ls, SOUTH AUSTRALIA, UP TO 1921, INCLUSIVE.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.	Date.	Amnt.
Wilmington ..	28 Feb., 1921	ins. 3.97	Wilmington	1 Mar., 1921	$\begin{aligned} & \text { Ins. } \\ & 7.12 \end{aligned}$

HEAVY RAINFALLS, VICTORIA, UP T0 1921, INCLUSIVE.

HEAVY RAINFALLS, TASMANIA, UP TO 1921, INCLUSIVE.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.		Dato.	Amit.
Gould's Country	8-10 Mar., 'll	${ }_{\text {lns. }}^{\text {Ln. }}$	Mathinna	\cdots	8-10 Mar.,'11	${ }_{\text {l }}^{\text {Ins. }} 15$
Lottah .	8-10 " ,	18.10	The Springs	.	30-31 Jan.,'16	10.75

10. Snowfall.-Light snow has been known to fall even as far north, occasionally, as latitude $31^{\circ} \mathrm{S}$., and from the western to the eastern shores of the continent. During exceptional seasons it has fallen simultaneously over two-thirds of the State of New South Wales, and has extended at times along the whole of the Great Dividing Range, from its southern extremity in Victoria as far north as Toowoomba in Queensland. During the winter, snow covers the ground to a great extent on the Australian Alps for several months, where also the temperature falls below zero Fahrenheit during the night, and in the ravines around Kosciusko and similar localities the snow never entirely disappears.

The antarctic " V "-shaped disturbances are always associated with our most pronounced and extensive snowfalls. The depressions on such occasions are very steep in the vertical area, and the apexes are unusually sharp-pointed and protrude into very low latitudes, sometimes even to the tropics.
11. Hail.-Hail falls throughout Australia most frequently along the southern shores of the continent in the winter, and over south-eastern Australia during the summer months. The size of the hailstones generally increases with distance from the coast, a fact which lends strong support to the theory that hail is brought about by ascending currents. Rarely does a summer pass without some station experiencing a fall of stones exceeding in size an ordinary hen-egg, and many riddled sheets of light-gauge galvanised iron bear evidence of the weight and penetrating power of he stones.

Hail storms occur most frequently in Australia when the barometric readings indicate a flat and unstable condition of pressure. They are almost invariably associated with tornadoes or tornadic tendencies, and on the east coast the clouds from which the stones fall are generally of a remarkable sepia-coloured tint.
12. Barometric Pressures.-The mean annual barometric pressure (corrected to sea. level and standard gravity) in Australia varies from 29.80 inches on the north coast to 29.92 inches over the central and 30.03 inches in the southern parts of the continent. In January the mean pressure ranges from 29.70 inches in the northern and central areas to 29.95 inches in the southern. The July mean pressure ranges from 29.90 inches at Darwin to 30.12 inches at Alice Springs. Barometer readings, corrected to mean sea level and standard gravity, have, under anticyclonic conditions in the interior of the continent, ranged as high as 30.77 inches (at Kalgoorlie on the 28th July, 1901) and have fallen as low as 27.55 inches. This lowest record was registered at Mackay during a tropical hurricane on the 21 st January, 1918. An almost equally abnormal reading of 27.88 inches was recorded at Innisfail during a similar storm on the l0th March, 1918. The mean annual fluctuations of barometric pressure for the capitals of Australia are shewn on page 67.
13. Wind.-Notes on the distinctive wind currents in Australia were given a preceding Year Books (see No. 6, page 83) and are here omitted to save space.
14. Cyclones and Storms.-The "elements" in Australia are ordinarily peaceful, and although severe cyclones have visited various parts, more especially coastal areas, such visitations are rare, and may be properly described as erratic.

During the winter months the southern shores of the continent are subject to cyclonic storms, evolved from the V-shaped depressions of the southern low-pressure belt. They are felt most severely over the south-western parte of Western Australia, to the southeast of South Australia, in Bass Straits, including the coast line of Victoria, and on the west coast of Tasmania. Apparently the more violent wind pressures from these cyclones are experienced in their northern half, that is, in that part of them which has a north. westerly to a south-westerly circulation.

Oceasionally the north-east coast of Queensland is visited by hurricanes from the north-east tropics. During the first four months of the year these hurricanes appear to have their origin in th neighbourhood of the South Pacific Islands, their path being a parabolic curve of south-westerly direction. Only a emall percentage, however, reach Australia, the majority recurving in their path to the east of New Caledonia.

Very severe cuclones, locally known as "Willy Willies," are peculiar to the northwest coast of Western Australia from the months of November to April inclusive. They apparently originate in the ocean, in the vicinity of Cambridge Gulf, and travel in a south-westerly direction with continually increasing force, displaying their greatest energy near Cossack and Onslow, between latitudes 20° and 22° South. The winds in these storms, like those from the north-east tropics, ore very violent and destructive,
causing great havoc amongst the pearl-fishers. The greatest velocities are usually to be found in the south-eastern quadrant of the cyclones, with north-east to east winds. After leaving the north-west coast, these storms either travel southwards, following the coast-line, or cross the continent to the Great Australian Bight. When they take the latter course their track is marked by torrential rains, as much as 29.41 inches, for example, being recorded in 24 hours at Whim Creek from one such occurrence. Falls of 10 inches and over have frequently been recorded in the northern interior of Western Australia from similar storms.

Some further notes on severe cyclones and on " Southerly Bursters," a characteristic feature of the eastern part of Australia, will be found in previous issues of the Year Buok (see No. 6, pp. 84, 85, 86).
15. Influences affecting Australian Climate.-Australian history does not cover a sufficient period, nor is the country sufficiently occupied, to ascertain whether or not the advance of settlement has materially affected the climate as a whole. Local changes therein, however, have taken place, a fact which suggests that settlement and the treatment of the land have a distinct effect on local conditions. For example, the mean temperature of Sydney shews a rise of two-tenths of a degree during the last twenty years, a change probably brought about by the great growth of residential and manufacturing buildings within the city and in the surrounding suburbs during that period. Again, low lying lands on the north coast of New South Wales, that originally were seldom subject to frosts, have, with the denudation of the surrounding hills from forests, experienced annual visitations, the probable explanation being that, through the absence of trees, the cold air of the high lands now flows, unchecked and untempered, down the sides of the hills to the valleys and lower lands.
(i) Influences of Forests on Climate. As already indicated, forests doubtless exercise a great influence on local climate, and hence, to the extent that forestal undertakings will allow, the weather can be controlled by human agency The direct action of forests is an equalising one; thus, especially in equatorial regions, and during the warmest portion of the year, they considerably reduce the mean temperature of the air. They also reduce the diurnal extremes of shade temperatures by altering the extent of radiating surface by evaporation, and by checking the movement of air. While decreasing evaporation from the ground, they increase the relative humidity. Vegetation greatly. diminishes the rate of flow-off of rain and the washing away of surface soil. Thus, when a region is protected by trees, a steadier water supply is ensured, and the rainfall is better conserved. In regions of snowfall the supply of water to rivers is similarly regulated, and without this and the sheltering influence of ravines and "gullies," watercourses supplied mainly by melting snow would be subject to alternate periods of flooding and dryness. This is borne out in the inland rivers. Thus, the River Murray, which has never been known to run dry, derives its steadiness of flow mainly through the causes above indicated.
(ii) Direct Influences of Forests on Rainfall. Whether forests have a direct influence on rainfall is a debatable question, some authorities alleging that precipitation is undoubtedly induced by forests, while others contend the opposite.

Sufficient evidence exists, however, to establish that, even if the rainfall has not increased, the beneficial effect of forest lands in tempering the effects of the climate is more than sufficient to disclose the importance of their protection and extension.

It is the rapid rate of evaporation, induced by both hot and cold winds, which injures crops and makes life uncomfortable on the plains. Whether the forest aids in increasing precipitation there may be doubt, but it must be admitted that it does check the winds and the rapid evaporation due to them.

Trees as wind-breaks have been successfully planted in central parts of the United States, and there is no reason why similar experiments should not be successful in many parts of our treeless interior. The belts should be planted at right angles to the direction of the prevailing parching winds, and if not more than half a mile apart will afford shelter to the enclosed areas.

In previous issues some notes on observations made in other countries were added (see Year Book No. 6, pp. 86 and 95).
16. Comparison of Rainfalls and Temperatures.-For the purpose of comparison, the following lists of rainfalle and temperatures are given for various important cities throughout the world, for the site of the Federal capital, and for the capitals of the Anstralian States.

COMPARISONS OF RAINFALLS AND TEMPERATURES
of Cities of the World wite those of Austrayia.

Place.	Height above M.S.L.	Annual Rainfall.			Temperature.					
				8. 0 0 0 0 0						
	Ft.	Ins.	Ins.	Ins.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.	Fahr.
Amsterdam	6	27.29	40.59	17.60	63.2	36.8	90.0	4.1	64.4	35.4
Auckland	125	43.31	63.72	26.32	66.1	52.5	91.0	31.9	67.2	51.8
Athens	351	15.48	33.33	4.50	79.2	49.1	109.4	19.6	81.0	47.4
Bergen	72	77.07	111.58	44.49	56.8	34.2	88.5	4.8	57.9	33.6
Berlin	161	22.72	30.04	14.25	64.8	333.0	98.6	-13.0	66.0	31.8
Berne	1,877	36.30	58.23	24.69	62.2	30.1	91.4	-3.6	64.4	28.0
Bombay	37	71.15	114.89	33.41	83.5	75.1	100.0	55.9	84.8	74.2
Breslan	482	22.52	32.56	16.50	64.1	33.5	100.0	-23.4	65.5	29.3
Brussels	328	28.35	41.18	17.73	62.6	36.0	95.5	- 4.4	63.7	34.5
Budapest	500	25.20	35.28	16.79	68.6	30.2	98.6	-5.1	70.4	28.2
Buenos Ayres	82	38.78	79.72	20.04	72.7	50.9	103.1	22.3	73.8	50.0
Calcutta .	21	61.82	98.48	38.43	85.6	68.0	108.2	44.2	86.0	66.4
Capetown	40	25.50	36.72	17.71	68.1	54.7	102.0	34.0	68.8	53.9
Caracas.	3,420	30.03	47.36	23.70	68.3	65.3	87.8	48.2	69.2	63.7
Chicago	823	33.28	45.86	24.52	70.0	26.1	103.0	-23.0	72.4	23.7
Christchureh	25	25.45	35.30	13.54	61.1	43.4	95.7	21.3	61.6	42.4
Christiania	75	23.23	32.21	16.26	61.0	24.5	95.0	-21.1	62.6	23.9
Colombo	40	83.83	139.70	51.60	81.5	79.9	95.8	65.0	82.6	79.1
Constiantinople	245	28.75	42.74	14.78	74.0	43.5	103.6	13.0	75.7	42.0
Copenhagen	10	20.79	25.83	16.47	60.4	33.3	85.5	-3.3	61.9	32.4
Dresden . .	115	26.80	34.49	17.72	62.9	32.4	93.4	-15.3	64.4	31.6
Dublin	47	27.66	35.56	16.60	59.4	42.0	87.2	13.3	60.5	41.7
Dunedin	300	37.06	53.90	22.15	57.3	43.1	94.0	23.0	57.9	42.0
Durban	260	40.79	71.27	27.24	75.6	64.4	110.6	41.1	76.7	63.8
Edinburgh	441	25.21	32.05	16.44	55.8	38.8	87.7	5.0	57.2	38.3
Geneva .	1,328	33.48	46.89	21.14	64.4	33.7			66.2	32.2
Genoa	157	51.29	108.22	28.21	73.8	46.8	94.5	16.7	75.4	45.5
Glasgow	184	38.49	56.18	29.05	52.7	41.0	84.9	6.6	58.0	38.4
Greenwich	149	23.50	35.54	16.38	62.0	39.5	100.0	6.9	63.5	38.5
Hong Kong	109	84.28	119.72	45.84	86.2	64.8	97.0	32.0	86.7	62.9
Johannesburg	5,750	31.63	50.00	21.66	65.4	54.4	94.0	23.3	68.2	48.9
Leipzig	384	24.69	31.37	17.10	63.1	31.5	97.3	-14.8	64.8	30.6
Lisbon	312	29.18	52.79	17.32	69.6	51.3	94.1	32.5	70.2	49.3
London (Kew)	18	23.80	38.20	16.64	61.2	39.8	94.0	9.4	62.7	38.9
Madras . .	22	49.85	88.41	18.45	89.0	76.8	113.0	57.5	89.9	76.1
Madrid	2,149	16.23	27.48	9.13	73.0	41.2	107.1	10.5	75.7	39.7
Marseilles	246	22.24	43.03	12.28	70.5	45.3	100.4	11.7	72.3	44.6
Moscow	526	18.94	29.28	12.07	63.4	14.7	99.5	-44.5	66.1	11.9
Naples	489	34.00	58.58	21.75	73.6	48.0	99.1	23.9	75.4	46.8
New York	314	44.63	58.68	33.17	71.4	31.8	102.0	-13.0	73.5	30.2
Ottawa.	236	33.40	53.79	25.63	67.2	14.1	98.0	-33.0	69.7	12.0
Paris	164	22.64	29.57	16.46	63.5	37.2	101.1	-14.1	64.9	36.1
Pekin	143	24.40	36.00	18.00	77.7	26.6	114.0	-5.0	79.2	23.6
Petrograd	16	21.30	29.52	18.75	61.1	17.4	97.0	-38.2	63.7	15.2
Quebec.	296	40.50	53.79	32.12	63.5	12.4	96.0	-34.0	66.3	10.1
Rome	166	32.57	57.89	12.72	74.3	46.0	104.2	17.2	76.1	44.6
San Francisco	155	22.27	38.82	9.00	58.8	50.5	101.0	29.0	59.3	49.5
Shanghai. .	21	45.00	62.52	27.92	78.0	41.1	102.9	10.2	80.4	37.8
Singapore	8	91.99	158.68	32.71	81.2	78.6	94.2	63.4	81.5	78.3
Stockholm	144	19.09	28.27	11.81	59.5	27.3	96.8	-25.6	61.9	26.4
Tokio	65	61.45	86.37	45.72	74.8	39.2	97.9	17.2	77.7	37.5
Trieste	85	42.94	63.14	26.57	73.9	41.3	99.5	14.0	76.3	39.9
Vienna	663	24.50	33.90	16.50	65.7	30.4	97.7	-8.0	67.1	28.0
Vladivostock	55	19.54	33.60	9.39	63.9	11.0	95.7	-21.8	69.4	6.1
Washington	112	43.50	61.33	30.85	74.7	34.5	106.0	-15.0	76.8	32.9
Wellington (N.Z.)	110	49.70	67.68	30.02	61.7	48.4	88.0	30.0	62.4	47.5
Zurich .	1,542	45.15	78.27	29.02	63.3	31.8	94.1	-0.8	65.1	29.5

Fedreal Capitad Site.

The State Capitals.

Perth	1.97	33.91	46.73	20.21	${ }_{73.1}^{\text {(a) }}$	(b) 56.0	108.4	34.2	74.2	55.2
Adelaide	140	21.05	30.87	11.39	73.1	53.1	116.3	32.0	74.1	51.7
Brisbane	137	45.65	88.28	16.17	76.6	59.7	108.9	36.1	77.0	58.4
Sydney	13:3	48.04	82.76	21.49	71.0	54.0	108.5	35.9	71.7	52.6
Melbourne	115	25.66	44.25	15.61	66.6	50.0	111.2	27.0	67.5	48.6
Hobart	177	23.59	43.39	13.4.3	61.7	46.8	105.2	27.0	62.4	45.5

(a) Mean of the three hottest mouths.
(b) Mean of the three coldest months.
17. Climatological Tables.-The means, averages, extremes, totals, etc., for a number of climatological elements have been determined from long series of observations at the Australian capitals up to and including the year 1921. These are given in the following tables:-

Climatological data for perth，w．a．

Lat． $31^{\circ} 57^{\prime}$ S．，Long． $115^{\circ} 50^{\prime}$ E．Height above M．S．L． 197 Ft．
Barometer，Wind，Evaporation，Lightning，Clouds，and Clear Days．

Month．		Wind．								
			atest ber of es in day．	Mean Hourly Pres－ sure． （lbs．）	Total Miles．	Prevailing Direction．				
No．of yrs．over which observatinn extends	37		24	24	24	24	23	24	25	25
Jannary	29.906	797	21／30	0.69	11，266	SSE	10.44	1.8	2.7	14.1
February	29.924	650	6／08	0.63	9，85：3	S SE	8.60	1.5	2.8	11.5
March	29.988	6.51	6／13	0.54	10，004	SSE	7.64	1.4	3.2	11.9
April	30.076	955	25／00	0.41	8.443	S E	4.74	1.3	4.1	8.0
May	30.076	768	$5 / 12$	0.35	8，0：35	ENE	2.72	2.3	5.3	5.1
June	30.058	861	27／10	0.37	7，972	N	1.73	2.3	5.9	3.1
July	30.091	949	11／99	0.39	8，444	\mathbf{N}	1.71	2.3	5.4	4.9
August	30.084	966	15／03	0.42	8，854	W	2.36	1.7	5.3	4.8
September	30.060	864	11／05	0.47	9，033	S W	3.30	1.4	4.9	5.6
October	30.031	809	6／16	0.53	9，891	S S W	5.22	1.1	4.9	5.8
November	29.988	777	18／97	0.61	10，253	S	7，65	1.3	3.8	7.9
December	29.928	672	31／98	0.65	10，9：36	S	9.84	1.6	3.0	12.2
$\text { Year } \begin{cases}\text { Totals } & . \\ \text { Averages } & \cdots \\ \text { Extremes } & \ldots\end{cases}$	30.018	966	15／8／03	0.50	112，984	S	65．95	20.0	4.3	94.9

Temperature．

Month．	Mean Tempera－ ture（ F ／hr．）．			Extreme Shade Temperature（Fintr．）．			Extreme Temperature（Fahr．）．		
	Mean Max．	Mean Min．	Mean．	Highest．	Lowest．		Highest in Sun．	Lowest on Grass．	
No．of yrs．over which observation extonite	25	25	25	25	25	25	24	23	24
January ．．	$\overline{34.6}$	63.4	74.0	$\overline{108.428 / 21}$	$\overline{50.6 ~ 25 / 01}$	57.8	177.3 22／11	40.4	321.0
February ．	84.9	63.5	74．2	107.3 19／1．5	$47.71 / 02$	59.6	$169.04 / 99$	39.8 1／13	273.0
March	81.3	60.9	71.1	106.16	45.818103	60.3	$167.0 \quad 19 / 13$	36.7 8／03	269.4
April	75.9	57.1	6 6． 5	99.7 9／10	39.3 20／14	60.4	$157.0 \quad 8 / 16$	$\begin{array}{ll}31.0 & 20 / 14\end{array}$	$\underline{219.2}$
May	68.6	52.5	60.6	$\begin{array}{ll}90.4 & 2 / 07\end{array}$	$\begin{array}{lll}34.3 & 11 / 14\end{array}$	56.1	$\begin{array}{lll}141.0 & 2 / 21\end{array}$	$25.311 / 14$	177.2
June	63.9	49.6	56.8	$81.712 / 14$	36.3 29／14	45.4	$\begin{array}{ll}135.5 & 9 / 14\end{array}$	$29.0 \quad 20 / 16$	143.4
$J \mathrm{July}$	62.7	47.7	55.2	76.4 21／21	34.2 7／16	42.2	$133.213 / 1.5$	$25.1 \quad 30 / 20$	168.0
August	63.8	48.1	56.0	$81.012 / 14$	35.3 31／08	45.7	$145.129 / 21$	27.9 10／11	186.5
September	66.1	50.9	58.2	$90.930 / 18$	$\begin{array}{lll}38.9 & 17 / 13\end{array}$	52.0	153.6 29／16	29.2 21／16	203.4
October ．	69.3	59.7	61.0	$93.417 / 06$	$\begin{array}{ll}40.9 & 4 / 17\end{array}$	52.5	$154.0 \quad 29 / 14$	$30.5 \quad 4 / 17$	236.7
November	75.4	56.6	66.0	104.6 24／13	42.0	62.6	166.6 23／15	$35.5 \quad 6 / 10$	289.4
December	80.8	60.6	70.7	107.9 20／04	$48.0 \quad 2 / 10$	59.9	168．7 25／15	 39.1 $\begin{array}{rr}14 / 12 \\ 2 / 10\end{array}$	325.2
Year $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$	73.1	55.2	$\stackrel{64.2}{-}$	108．4 $28 / 1 / 21$	$3^{34.2}{ }^{\text {7／7／18 }}$	754.2	$177 . \overline{3}$ $22 / 1 / 14$	${ }^{25.1}{ }^{\text {－}}$－${ }^{\text {30／7／20 }}$	2812．4a

（a）Total tor year．
Humidity．Rainfati．and Dew．

[^5]（b）January，Hebruary，March，November，and December，various years．

CLImatological data for adelaide, S.a.
Lat. $34^{\circ} 56^{\prime}$ S., Long. $138^{\circ} 35^{\prime}$ E. Height above M.S.L. 140 Ft.
Barometer, Wind, Evaporation, Lightnino, Clouds, and Clfar Days.

(a) 10/4/96 and 31/8/97.

Temperature and Sunshine.

Month.	Mean Temperature (Fair.).			Extreme Shade Temperiture (Fahr.).			Extreme Temperature (Eahr.).		
	Mean Max.	Mean Min.	ean	Highest.	Lowest.		Bighest in Sun.	Lowest on Grass.	
No. of yrs. over which observation extends	65	'65	65	65	65	65	44	61	40
January	86.5	61.7	74.1	116.3 26/58	$45.1 \quad 21 / 84$	71.2	180.0 18/82	$36.514 / 79$	311.2
February	86.2	62.1	74.1	$113.612 / 99$	$45.5123 / 18$	68.1	170.5 10/00	36.7 (c)	263.9
March	80.8	58.9	69.8	$108.0 \quad 12 / 61$	$44.8-157$	63.2	174.0 17/83	33.8 27/80	238.8
April	73.2	54.5	63.9	98.0 10/66	$39.615 / 59$	58.4	$155.0 \quad 1 / 83$	$\begin{array}{ll}30.2 & 16 / 17\end{array}$	178.2
May	65.6	50.2	57.9	89.5 4/21	36.9 (a)	52.6	$\begin{array}{lll}148.2 & 12 / 79\end{array}$	$25.910 / 91$	148.5
June	60.3	46.7	53.5	$76.0 \quad 23 / 65$	$\begin{array}{lll}32.5 & 27 / 76\end{array}$	43.5	$138.818 / 79$	$22.912 / 13$	121.4
July	58.8	44.5	51.7	74.0 11/06	$\begin{array}{lll}32.0 & 24 / 08\end{array}$	42.0	134.5 $26 / 90$	$23.3 \quad 25 / 11$	138.4
August -	62.0	4.5 .9	54.0	$85.031 / 11$	32.3 17/59	52.7	140.0 31/92	23.5 7/88	163.3
September	66.3	47.9	57.1	90.7 23/82	$32.74 / 58$	58.0	$160.5 \quad 23 / 82$	$26.215 / 08$	184.3
October	79.5	51.4	62.0	$102.830 / 19$	36.0	66.8	$162.030 / 21$	27.8 2/18	228.0
November	78.6	55.4	67.0	113.5 21/65	40.8 2/09	72.7	166.9 20/78	$31.5 \quad 2 / 09$	261.2
December	83.4	59.0	71.2	114.2 14/76	43.0 (b)	71.2	175.7 7/99	32.54	304.6
Year $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$		53.2	63.0	118.3 $26 / 1 / 58$	32.0 $24 / 7 / 08$	84.3	180.0 $18 / 1 / 82$	${ }^{22.9} \begin{aligned} & \text { - } \\ & \text { 12/6,13 }\end{aligned}$	2,541.0d

(a) $26 / 1895$ and $24 / 1904$. (b) $16 / 1861$ and $4 / 190$. (c) $24 / 78$ and $23 / 18$. (d) Total for year.

Humidity, Rainfale, and Dew.

(a) 1848, 1849, 1878, and 1906.
(b) 1848, 1860, dic.
(c) 1859 , \&c.
(d) $25 / 93$ and $12 / 17$.
(e) January, February, March, and December, various years.

CLIMATOLOGICAL DATA FOR BRISBANE，QUEENSLAND．

Lat． $27^{\circ} 28^{\prime}$ S．，Long． $153^{\circ} 2^{\prime}$ E．Height above M．S．L．137．Ft． Barometer，Wind，Evaporation，Lightning，Clouds，and Clear Days．

Month．		Wind．							
		Greatest Number of Miles in one day．	Mean Hourly Pres－ sure． （Ibs．）	Total Diles．	Prevaillng Direction．				
No．of yrs．over which observation extends	35	11	11	11	35	13	35	30	13
January	29.876	315 24／14	0.10	4，222	IL	6.516	5.3	5.8	2.8
February	29.904	$340 \quad 10 / 15$	0.13	4，419	SE	5.291	5.1	5.7	2.1
March	29.958	305 29／16	0.09	4，086	SE\＆S	4.726	4.4	5.3	4.5
April	30.050	335 6／21	0.08	3，606	S	3.644	3.2	4.5	8.1
May	30.090	245 29／19	0.07	3，474	8	2.748	3.2	4.4	8.2
June	30.066	307 23／16	0.07	3，364	S		2.1	4.2	8.2
July	30.072	291 31／21	0.07	3，470	SW \＆S	－	2.5	3.7	11.8
August ．	30.097	284 6／20	0.08	3，823	S	689	3.5	3.6	11.5
September	30.040	269 19／21	0.07	3，532	S	3.689	5.7	3.6	11.8
October	30.006	$325 \quad 25 / 18$	0.09	4，048	N E	5.166	6.9	4.1	7.8
November	29.958	272 22／21	0.10	4，185	NE\＆N	5.922	8.1	4.8	6.1
December	29.390	$295 \quad 21 / 13$	0.11	4，561	$\mathrm{NE}^{\text {E }}$	6，579	8.4	5.2	3.4
$\text { Year } \begin{cases}\text { Totals } & \cdots \\ \text { Averages } & \cdots \\ \text { Vxtremes }\end{cases}$	30.001	340 －$\overline{10 / 2 / 15}$	0.00	$3 . \overline{899}$	S to F and N	44．281	58.4	$\overline{4.6}$	86.3

Temperature and Sunshine．

（a） 10 and $11 / 04$ ．
（c） $9 / 96$ and $5 / 03$（c）12／94 and 2,96 ．
（d）Total for year．
Humidity，Rainfall，and Dew．

（a） $1862,1869,1880$.
（b） $15 / 76,16 / 89$ ．
（c）March，May，June，July，August，and November，various years．

CLIMATOLOGICAL DATA FOR SYDNEY, N.S.W.
Lat. $33^{\circ} 52^{\prime}$ S., Long. $151^{\circ} 12^{\prime}$ E. Height above M.S.L. 133 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds, and Clear Days.

Month.		Wind.							
		Greatest Number of Miles in one day.	Mean Hourly Pressure. (lbs.)	Total Miles.	Prevailing Direction.				
No. of yrs. over which observation extends	6:3	55	55	55	55	49	62	63	58
January	29.903	721 1/71	0.36	8,130	N E	5.238	4.7	5.8	2.1
February	29.946	871 12/69	0.30	6,965	N E	4.099	4.3	6.0	1.4
March	30.012	943 20/70	0.24	6,750	N E	3.519	4.1	5.6	2.1
April	30.074	803 6/82	0.19	6,099	N F	2.505	3.9	5.1	3.0
May	30.082	758 6/98	0.24	6,324	W	1.729	3.3	4.8	3.7
June	30.058	712 7/00	0.24	7,909	W	1.406	2.2	4.8	3.8
July	30.075	$930 \quad 17 / 79$	0.30	7,090	W	1.502	2.4	4.4	4.7
August	30.070	756 29/72	0.24	6,839	W	1.858	3.2	40	5.2
September	30.009	964 6/74	0.30	7,096	W	2.640	4.0	4.3	4.4
October	29.972	9 ${ }^{6} 6$ - 4/72	0.30	7,731	N E	3.780	4.9	5.0	2.7
November	29.940	720 13/68	0.36	7,582	N E	4.516	5.5	5.6	1.8
December	29.882	938 3/34	0.36	8,016	N E	5.294	5.7	5.7	2.1
$\text { Year } \begin{cases}\text { Totals } & \ldots \\ \text { Averages } & \ldots \\ \text { Extremes } & \ldots\end{cases}$	30.002	${ }^{464}$ - $^{\text {- } / 9 / 74}$	0.29	$\overrightarrow{7,236}$	$\overline{\mathrm{NE}}$	88.086	48.2	$\overline{5.1}$	37.1

Temperature and Sunshine.

$\begin{array}{ll}\text { (a) } 30 \text { and } 31 / 14 . & \text { (b) Total for year. }\end{array}$
Humidity, Rainfall, and Dew.

CLIMATOLOGICAL DATA FOR MELBOURNE，VICTORIA．

Lat． $37^{\circ} 49^{\prime}$ S．，Long． $144^{\circ} 58^{\prime}$ E．Height above M．S．L． 115 Fr．
Barometer，Wind，Evaporation，Lightning，Clouds，and Clear Days．

Temperature and Sunshine．

（a）17／1884 and 20／1897．（b）Total for year．
Humidity，Rainfall，and Dew．

Month．	Rel．Hum．（\％）			Rainfall（inches．）								Dew（inches）．	
		$\begin{aligned} & \text { 总 } \\ & \text { 总总 } \\ & \text { 可总 } \end{aligned}$		商							$\begin{aligned} & 0 \\ & 0 . \\ & \text { 영 } \end{aligned}$		
No．of yrs．over which observation extends	14	14	14	66	66						66	－	14
January ．．	55	65	50	1.88	7	5.68	1904	0.04	1878	2.97	9／97	－	2.5
February ．．．．	61.	69	53	1.70	7	6.24	1904	0.03	1870	3.37	18／19	－	3.2
March \quad.	64	71	57	2.23	9	7.50	1911	0.18	1859	3.55	5／19	－	7.5
A pri］	71	78	66	2.23	11	6.71	1901	0.33	1908	2.28	22／01	－	8.3
May	79	84	73	2.19	13	4.31	1862	0.45	1901	1.85	7／91	－	8.1
June	82	87	77	2.10	14	4.51	1859	0.73	1877	1.74	21／04	－	7.8
July	82	86	76	1.83	14	7.02	1891	0.57	1902	2.71	12／91	－	10.1
August	76	82	70	1.85	14	3.59	1909	0.48	1903	1.87	17／81	一	7.6
Beptember	68	76	60	$\underline{2.47}$	14	7.93	1916	0.52	1907	$\stackrel{9}{29}$	12／80	－	6.4
October	62	67	56	2.62	13	． 7.61	1869	0.29	1914	3.00	17／69	－	6.6
November	59	69	52	2.24	11	6.71	1916	0.25	1895	2.57	16／76	－	1.8
December	57	69	51	2.32	0	7.18	1863	0.11	1904	2.62	28／07	－	1.6
$\text { Year } \begin{cases}\text { Totals } & \cdots \\ \text { Averages } & \cdots \\ \text { Extremes } & \cdots \\ \hline\end{cases}$	68	$\overline{\square 7}$	二	25.66	136	7.93	9／16	0.03	2／70	3.55	E／3／19	二	71.5

GRAPHS SHEWING ANNUAL FLUGTUATJONS OF NORMAL MAXIMUM AND MNIMUM TEMPERATURE AND HUMIDITY IN SEVERAL PARTS OF THE COMMONWEALTH OF AUSTRALIA.

Explanation of the Graphs of Temperature and Hemidity.-In the above graphs in which the heavy lines denote "temperature" and the thin lines " humidity", the fluctuations of mean temperature and mean humidity are shewn throughout the year. These curves are plotted from the data given in the Climatological Tables hereinafter. The temperatures are shewn in degrees Fahrenheit, the inner columns giving the corresponding values in Centigrade degrees. Humidities have not been obtained for Darwin, Daly Waters, and Alice Springs.

For the thin ines the degree numbers represent relative humidities, or the percentages of actual saturation (absolute saturation $=100$).

The upper temperature line represents the mean of the maximum, and the lower line the mean of the minimum results; thus the curves also shew the progression of the range between maximum and minimum temperatures throughout the year. The humidity curves shew the highest and lowest values of the mean monthly humidity at $9 \mathrm{a} . \mathrm{m}$. recorded during a series of years.

[^6]In a similar manner it will be seen that the greatest mean humidity, say for March, is about 66° and the least mean humidity for the month 46° : in other words, at Perth the degree of saturation of the atmosphere by aqueous vapour for the month of March ranges between 66% and 46%.

GRAPRS SIFEWING ANNUAL FLUCTUATIONS OE MEAN RAINFALL AND MEAN EVAPORATION IN SEVERAL PARTS OF THE COMMONWEALTH OF AUSTRALIA.

Explanation of the Graphs of Rainfall and Evaporation.-On the preceding graphs thick lines denote rabinfall and thin lines evaporation, and shew the Huctuation of the mean rate of fall per month throughont the year. The results. plotted from the Chimatutonical tables heremater, are shewn in inches (see the outer columns), and the corresponding metric scale (centimetres) is shewn in the two inner columms. The evaporation is not given for Darwin aud Dialy Waters.

At Perth, Adelaide, Brisbane, Mchbourne, Hobart, Alice Springs, and Coolgardie the results have been obtained from jacketed tanks sunk in the ground. At Sydney and Dubbo sunken tanks without water jackets are used, whist at Laverton (W.A.) the iecords are taken from a small portable jacketed evaporation dish of 8 inches in diameter.

Interpritation of the Graphs.- The distance for any date from the zero line to the curve represents the average number of inches, reckoned as per month, of rainfall at that date. Thus, taking the curves for Adelitide, on the Ist January the rain falls on the average at the mate of about four-fifths of an inch per month, or, say, at the rate of about $9 \downarrow$ jnches per year. In the middle of June it falls at the rate of nearly 3 inches per month, or, say, at the rate of about 36 inches per year. At Dubbo the evaporation is at the rate of nearly $11 \frac{1}{2}$ juches per month about the middle of January, and only about $1 \frac{1}{2}$ inches at the middle of June.

TABLE SHEWING MEAN ANNUAL RAINFALL AND EVAPORATION IN INCHES AT THE PLACES SHEWN ON PRECEDING PAGE, AND REPRESENTED BY THE GRAPMS.

-		Rainfall.	Evaporation.	-	Rainfall.	Evaporation.
Perth	.	33.91	65.95	Darwin	61.73	-
Adelaide	\ldots	21.05	54.55	Waly Waters ..	26.39	-
brishane	-	45.65	44.28	Alice Springs . .	11.21	94.94
Sydney	-	48.04	38.09	Dubiro	22.13	66.37
Delbourne	.	25.66	38.83	Laverton, W.A.	9.93	141.33
Hobart	\ldots	23.59	32.67	Coolgardie ..	10.13	87.72

GRAPHS SHEWING ANNUAL FLUCTUATIONS OF MEAN BAROMETRIC PRESSURE FOR THE CAPITALS OF THE SEVERAL STATES OF THE COMDONWLALTH OF AUSTIRALIA.

Emplanation of the Graphs of Bamometric Pressure.- On the above graphs the lines representing the yearly fluctuation of barometric pressure at the State capital cities are means for long periods; and are plotted from the Climatological Tables given hereinafter. The pressures are shewn in inches on about it times the natural scale, and the corresponding mpssures in centimetres are also shewn in the two inner columins, in which each division represents one millimetre.

[^7]Chart indicating the area affected and period of duration of the Longest Heat Waves when the Maximum Temperature for consecutive 24 hours reached or exceeded 80° Fah.

Diagram showing the greatest number of consecutive days on which the Temperature in the shade was over 100^{\prime} and also over 90° at the places indicated.

METEOROLOGICAL SUB-DIVISIONS.

West Australia.
No.

1. East Kimberley.
2. West Kimberley.
3. North-West
4. Gascoyne.
5. South-West.
6. Eucla.
7. Eastern.

South Austratia.
8. Northern Territory
9. Far North and N, w.
10. West.

No.
11. Upper North.
12. North-East.
13. Lower North.
14. Central
15. Murray Valley
16. South-East.

Queensiand.

17. Peninsular.
18. Gulf.
19. Far West

No.
22. Central Coast
23. South-East Const.
24. Darling Downs.
25. Maranoa
26. South-West

New South Walfe.
27. Western
28. North-West Plain.
29. North-West Slope.
30. Northern Tableland 40. Gippsland.
31. North Coast.
13. North-East
32. Hunter \& Manning. 42. Central.

No.
33. Central Tableland 33a. Metropolitan.
34. Cent. Westn. Slope.
35. Cent. Westn. Plain.
36. Riverina.
37. South-West Slope.
33. Southern Tableland
38. South Coast.

Victoria.
2. Central.
is

No
43. North Central 44. Northern Country.
45. Mallee.
46. Winmera.
47. Western.

Tasmania.
48. Northern. 49. W.Coast Mt.Region 50. Central Plateau.
51. Midland.
52. Enst Coast
53. Derwent.
54. South-Erastorn.

GRAPHS SHEWING THE NORMAL MONTHLY, AND NORMAT ANEUAL TEMPERATURES OP THE PRINCIPAL AUSTRALIAN UITIES FROM 1912 TO 1921.

EXPLANATION OF GRAPHS
The six light continuous curves shew the fluctuations of mean monthly temperatures of the Australian capitals from 1912 to 1921 .

The six heavy curves similarly shew the fluctuations of the mean annual temperatures of the Australian capitals from 1912 to 1921.

The base of each small square denotes one month, and the vertical side 1° Centigrade or $1 \cdot 8^{\circ}$ Fabrenheit.

The Climate and Meteorology of Australia．
CLIMATOLOGICAL DATA FOR HOBART，TASMANIA．
Lat． $42^{\circ} 53^{\prime}$ S．，Long． $147^{\circ} 20^{\prime}$ E．Height above M．S．L． 177 Ft．
Barometer，Wind，Evaporation，Lightning，Clouds，and Clear Days．

Month．		Wind．								
			test er of 3 in day．	Mean Hourly Pres－ sure． （lbs．）	Total Miles．	Prevailing Direction．				
No．of yrs．over which observation extends	37			11	11	17	11	14	59	15
January	29.837	500	30／16	0.19	5，924	NW\＆SE	5.317	0.6	0.9	2.9
February	29.927	393	19／13	0.13	4，474	SE\＆N	3.885	1.3	5.9	2.7
March	29.940	407	16／21	0.13	4，861	N\＆SE	3.023	1.3	5.9	2.0
April	29.959	432	7／17	0.13	4，841	NW\＆SE	2.036	0.9	6.0	1.6
May	29.991	411	3／16	0.12	4，677	N\＆NW	1.375	0.6	6.0	2.1
June	29.939	569	27／20	0.13	4，790	N\＆NW	0.885	0.6	6.1	1.5
July	29.929	425	16／21	0.12	4，790	N\＆NW	0.918	0.6	5.7	2.7
Angust	29.927	459	30／11	0.13	4.951	N\＆NW	1.209	0.6	5.9	2.1
September	29.847	516	26／15	0.19	5，662	N\＆NW	2.042	1.0	6.1	1.9
October	29.843	461	8／12	0.18	5，728	N W \＆SE	3.207	0.8	6.3	1.7
November	29.801	508	18／15	0.19	5，788	NW\＆SE	4.074	0.9	6.3	1.7
December	29.811	486	30／20	0.18	5，732	NW\＆SE	4.695	1.3	6.2	1.2
$\text { Year }\left\{\begin{array}{l} \text { Totals } \\ \text { Averages } \\ \text { Extremes } \end{array}\right.$	29.896		$7 / 6 / 20$	0.15	62,218 -	．$\overline{\mathrm{N}}$	32.666 -	10．5	$\overline{6.0}$	24.1

Temperature and Sunshine．

（a） $3 / 72$ and $2 / 06$ ．
（b） $5 / 86$ and $13 / 05$ ．
（c）Total for year．
（d）$-/ 88$ and $-/ 92$ ．
（e） $1 / 86$ and－／99．
Humidity，Rainfall，and Def．

Sonth．		Rel．Hum．（\％）			Rainfall（inches）．					Dew（inches）	
		$\begin{aligned} & \text { 틑 } \\ & \text { 気 } \end{aligned}$	荡总品		空		Greatest Monthly．	I．enst Monthly．	Greatest in One Day．		
No．of yrs．over which observation extends		38	38	38	79	78	79	79	55	－	12
January		63	77	51	1.78	9	5.91	0.031841	2.96 30／16	－	0.9
February		65	80	51	1.43	8	9.151854	0.071847	4.50 25／54a	－	9.2
March		69	78	58	1.69	10	7.601854	0.021843	$2.79 \quad 5 / 19$	－	4.1
April		74	84	61	1.88	11	6.501909	0.0711904	5.02 20／09	－	10.0
May		78	88	68	1.86	13	A．37 1905	0.101843	3.22 14／5S	－	12.9
June		82	92	68	2.19	14	8.151889	$\begin{array}{ll}0.22 & 1852\end{array}$	4.11 14／89	－	7.1
July		80	88	72	2.15	14	5.931849	$\begin{array}{ll}0.30 & 1850\end{array}$	2.00 27／78	－	7.5
Angust		77	85	64	1.84	14	10.161858	$\begin{array}{ll}0.23 & 1854\end{array}$	$4.3512 / 58$	－	7.6
September		72	82	60	2.12	14	7.14184	$\begin{array}{ll}0.39 & 1847\end{array}$	3.50 29／44	－	4.2
October ．		67	80	51	2.21	15	6.671906	$\begin{array}{ll}0.26 & 1850\end{array}$	2.58 4／06	－	3.1
November		64	78	50	2.48	14	8.921849	0.161868	3.97 6／49	－	1.5
December		61	79	49	3.98	11	9.001875	0.11 1842	2.48 13／16	－	0.9
Year $\left\{\begin{array}{l}\text { Totals } \\ \text { Averages } \\ \text { Extremes }\end{array}\right.$		$\overline{71}$	－	二	23.59	147	二	－	二	－	62.0
		－				$10.16{ }^{-}$	$0.02{ }^{-}$	$5.02{ }^{-}$	－	－	
						8／1858	$3 / 1843$	20／4／09			

（a） 4.18 on $26 / 54$ also．

[^0]: *The extreme points are "Steep Point" on the west. "Cape Byron" on the east, "Cape York" on the north, "Wilson's Promontory" on the south, or. if Tasmania be included, "South East Cape." The limits, according to the 1903-4 edition of "A Statistical decount of Australia and New Zealand," p. 2, and, according to Volume XXV. of the Encyclopredia liritannica, tenth edition, p. 787, aro respectively $113^{\circ} 5^{\prime}$ E., $153^{\circ} 16^{\prime} \mathrm{E}$., $10^{\circ} 39^{\prime}$ S.. and $39^{\circ} 11^{\circ}$ S., but these figures are obviously defective. a similar Inaccuracy appears in the XI. edition of the Encyclopredia.

 + Its correct value for 1920 is $23^{\circ} 26^{\prime} 58.89^{\prime \prime}$, and it decreases about 0.47° per annum.

[^1]: * Danish colony only. Total area has been estimated as between 827,000 and 850,000 square miles.

[^2]: * Prepared from data supplied by the Commonwealth Meteorologist, H. A. Hunt, Esquire, F.R. Met. Soc.

[^3]: * In Australia artifcial storage ponds or reservoirs are called "tanks."

[^4]: *Mr. Jas. Laidlaw, of Lyndon, stat(sat that this fell in 4 hours. $\dagger 37 \frac{1}{2}$ hours. $\ddagger 22 \frac{1}{9}$ hours.

[^5]: （a）Various years．

[^6]: Interpretation of the Graphs.-The curves denote mean monthly values. Thus, taking for example, the temperature graphs for Perth, the mean readings of the maximum and minimum temperatures for a number of years on 1 st January would give respectively about 83° Fahr. and 62° Fahr. Thus the mean range of temperature on that date is the difference, viz., 21°. Similarly, observations about lst June would give respectively about 66° Fahr. and 51° Fahr., or a range of 15°.

[^7]: Interpretation of the Barometric Graphs.-Taking the Brisbane graph for purposes of illustration, it will be seen that the mean pressure on 1 st January is about 29.87 inches, and there are maxima in the middle of May and August of about $30 \cdot 09$ inches.

